Inner bremsstrahlung in electromagnetic zero-zero transitions in nuclei

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 71167
(http://iopscience.iop.org/0301-0015/7/10/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:50

Please note that terms and conditions apply.

Inner bremsstrahlung in electromagnetic zero-zero transitions in nuclei

Hugh Burkhardt \dagger, R K P Ziat§ and D R Owen \ddagger
+ Department of Mathematical Physics, University of Birmingham, England
\ddagger University of the West Indies, St. Augustine, Trinidad

Received 3 December 1973

Abstract

The general form of the final state distribution is given for inner bremsstrahlung by the electron pair produced in $0-0$ nuclear transitions with no parity change. The expression for the resultant photon energy spectrum is given and evaluated numerically for the transition in ${ }^{16} \mathrm{O}$.

Here we wish to report the results of a calculation of the process of internal bremsstrahlung by the electron pair produced in electromagnetic zero-zero transitions in nuclei. Our results are complementary to those of Dalitz (1951) who gives a fairly full discussion of the problem. As the method is standard, we shall content ourselves here with a brief statement of the basis of the calculation and of the results, with particular reference to ${ }^{16} \mathrm{O}$.

The process which we are considering is

$$
\begin{equation*}
A^{*} \rightarrow A+\mathrm{e}^{+}+\mathrm{e}^{-}+\gamma \tag{1}
\end{equation*}
$$

where A^{*} and A are nuclear levels of zero angular momentum and the same parity separated by an energy Δ; we shall be particularly concerned with the case of the 6.06 MeV and ground states of ${ }^{16} \mathrm{O}$. The process can be represented as the sum of two diagrams, shown in figure 1. The interaction at the electron vertex is given by standard

Figure 1.
electrodynamics as $e \bar{\psi} \gamma^{\mu} \psi A_{\mu}$; that at the nuclear vertex can in principle be calculated from a knowledge of the nuclear structure, but in practice we may not have sufficient knowledge to do this. However, to a good approximation it depends on only one § Now at the University of Southampton, England.
parameter which cancels out when we compute the branching ratio of (1) compared to the main decay process

$$
\begin{equation*}
A^{*} \rightarrow A+\mathrm{e}^{+}+\mathrm{e}^{-} . \tag{2}
\end{equation*}
$$

The argument is as follows. The nuclear interaction can be written as $A_{\mu} j_{\mu}\left(q^{2}\right)$, where

$$
\begin{equation*}
q^{2} \equiv q_{0}^{2}-q_{3}^{2}=\Delta^{2}-q_{3}^{2} \tag{3}
\end{equation*}
$$

is the virtual photon mass. The nuclear transition current j_{μ} is a function of q^{2} and we know that it must vanish at $q^{2}=0$, because there is no transition Coulomb field. We therefore write

$$
\begin{equation*}
j_{\mu}\left(q^{2}\right)=j_{\mu}^{\prime}(0) q^{2} \tag{4}
\end{equation*}
$$

ignoring further dependence on q^{2}. But the only independent four-momenta at the vertex are P_{μ} and q_{μ} so we may write

$$
\begin{equation*}
j_{\mu}^{\prime}(0)=e a_{0}\left(2 P_{\mu}+\alpha q_{\mu}\right) \tag{5}
\end{equation*}
$$

Since current conservation requires $q^{\mu} j_{\mu}=0$, we find

$$
\begin{equation*}
j_{\mu}\left(q^{2}\right)=q^{2} e a_{0}\left(2 P_{\mu}-\frac{2 M \Delta}{q^{2}} q_{\mu}\right) \tag{6}
\end{equation*}
$$

and the effective potential a_{μ} acting on the electron current is such that

$$
\begin{equation*}
\phi \equiv a_{\mu} \gamma^{\mu}=\frac{j_{\mu} \gamma^{\mu}}{2 M q^{2}}=e a_{0}\left(\gamma^{0}-\frac{\Delta q}{q^{2}}\right) . \tag{7}
\end{equation*}
$$

We have ignored the recoil kinetic energy of the nucleus of mass M, since

$$
q_{3}^{2} / 2 M \Delta \leqslant \Delta / 2 M \ll 1
$$

The pair creation process (2) has a matrix element

$$
\begin{equation*}
\mathscr{M}_{t s}=-e\left(\bar{u}_{t}\left(p_{-}\right) d v_{s}\left(p_{+}\right)\right) \tag{8}
\end{equation*}
$$

and a total probability

$$
\begin{equation*}
\lambda_{\mathrm{p}}=\frac{4 a_{0}^{2} e^{4}}{(2 \pi)^{3}} \int_{m}^{\Delta-m} \mathrm{~d} E_{+} \mathrm{d} E_{-} p_{+} p_{-}\left(E_{+} E_{-}-m^{2}\right) \delta\left(E_{+}+E_{-}-\Delta\right) . \tag{9}
\end{equation*}
$$

The bremsstrahlung matrix element is

$$
\begin{equation*}
\mathscr{M}_{t s \pi}=-e^{2}\left[\bar{u}_{t}\left(p_{-}\right)\left(\epsilon_{\pi} \frac{1}{p_{-}+k-m} \notin-\alpha \frac{1}{p_{+}+k+m} \xi_{\pi}\right) v_{s}\left(p_{+}\right)\right] \tag{10}
\end{equation*}
$$

giving an angular distribution
$\mathrm{d} \lambda_{\mathrm{B}}=\sum_{t, s, \pi}\left|\mathscr{M}_{t s \pi}\right|^{2} \frac{1}{8 k E_{+} E_{-}} \frac{\mathrm{d}^{3} k \mathrm{~d}^{3} p_{+} \mathrm{d}^{3} p_{-} \mathrm{d}^{3} P^{\prime}}{(2 \pi)^{8}} \delta^{4}\left(p_{+}+p_{-}+k+P^{\prime}-P\right)$
where we use the electron spinor normalization $\bar{u} \cdot u=2 m$. Carrying out the spin and polarization sums and the trivial integrations we find, again neglecting the recoil kinetic energy,

$$
\begin{equation*}
\lambda_{\mathrm{B}}=\frac{a_{0}^{2} e^{6}}{(2 \pi)^{6}} \int T \cdot p_{+} p_{-} k \delta\left(E_{+}+E_{-}+k-\Delta\right) \mathrm{d} E_{+} \mathrm{d} E_{-} \mathrm{d} k \mathrm{~d} z_{+} \mathrm{d} z_{-} \mathrm{d} \phi_{+} \tag{12}
\end{equation*}
$$

where T can be written

$$
T=T_{+-}+T_{++}+T_{--}+T_{+}+T_{-}
$$

with
$T_{+-}=\frac{2}{\left(p_{+} \cdot k\right)\left(p_{-} \cdot k\right)}\left[p_{+} \cdot p_{-}\left(k E_{+}+k E_{-}+2 E_{+} E_{-}-p_{+} \cdot p_{-}\right)-m^{2}\left(p_{+} \cdot p_{-}+k^{2}\right)\right]$
$T_{+}=\frac{-m^{2}}{\left(p_{+} \cdot k\right)^{2}}\left(2 E_{+} E_{-}-p_{+} \cdot p_{-}+2 k E_{-}-k \cdot p_{-}-m^{2}\right)$
$T_{+}=\frac{-1}{p_{+} \cdot k}\left[2\left(E_{+}^{2}-E_{+} E_{-}-k E_{-}+p_{+} \cdot p_{-}\right)+k \cdot p_{-}-m^{2}\right]$
T_{--}and T_{-}are given by the exchange ($+\leftrightarrow-$) on T_{++}and T_{+}; four-vector scalar products are used in (13) so $p_{+} \cdot k \equiv E_{+} k-p_{+} k z_{+}$etc. From these formulae the spectra for any experiments which do not involve polarization measurements can be calculated. Dalitz (1951) gives the spectrum in $\cos \theta$, the angle between the electron and positron; we shall give here the photon energy spectrum and the branching ratio for 'hard' photons.

Integrating over all variables except the photon energy k, the photon spectrum may be written in the form

$$
\begin{align*}
\lambda_{\mathrm{B}}(k)=\frac{4 e^{6} a_{0}^{2}}{(2 \pi)^{5}} & \frac{1}{k} \\
& \int_{m}^{\Delta-m-k} \mathrm{~d} E_{+} \mathrm{d} E_{-} \delta\left(E_{+}+E_{-}+k-\Delta\right) \\
& \times \ln \left(\frac{E_{+}+p_{+}}{E_{+}-p_{+}}\right)\left[-\frac{m^{2}}{4}\left(2 k^{2}+m^{2}\right) \ln \left(\frac{E_{-}+p_{-}}{E_{-}-p_{-}}\right)-p_{-} m^{2}(2 \Delta-k)\right. \\
& \left.+E_{-} p_{-}\left(k^{2}+3 m^{2}\right)+2 E_{+} E_{-} p_{-}\left(k+E_{+}\right)\right] \tag{14}\\
& \left.-p_{+} p_{-}\left(5 E_{+} E_{-}-2 k E_{-}+4 k(\Delta-k)-4 m^{2}\right)\right\} .
\end{align*}
$$

The joint distribution in the two electron energy variables, E_{+}and E_{-}, is obtained by symmetrizing the integrand in (14), that is by averaging it with the expression found by interchanging the subscripts + and - ; the photon energy k can be eliminated by using the δ-function.

We have carried out the integration over the electron energies numerically for the transition in ${ }^{16} \mathrm{O}$ and the photon spectrum is shown in figure 2. The quantity plotted, $\rho(k)$, is the branching ratio per MeV

$$
\begin{equation*}
\rho(k)=\frac{\lambda_{\mathrm{B}}(k)}{\lambda_{\mathrm{P}}} \tag{15}
\end{equation*}
$$

where λ_{P} is given by equation (9).
Because of the infrared divergence the total branching ratio is only defined for photons above a specified energy, $k_{\text {min }}$; it can be well represented to 5% accuracy for $k_{\text {min }}<0.1 \mathrm{MeV}$, by

$$
\begin{equation*}
\rho=\int_{k_{\min }}^{5.04} \rho(k) \mathrm{d} k=2.5\left[10^{-2}+\lg \left(\frac{0.1 \mathrm{keV}}{k_{\min }}\right)\right] \tag{16}
\end{equation*}
$$

Figure 2. The photon energy spectrum.

These calculations arose from discussions with James Lowe; we have also benefited from comments by R H Dalitz and L Wolfenstein. One of us (DRO) would like to acknowledge the financial support of the United Kingdom Atomic Energy Authority; the other (HB) is grateful for the kind hospitality of the Theory Division of CERN during this work.

Reference

Dalitz R H 1951 Proc. R. Soc. A 206521

